Incorporating proximity information for relevance language modeling in speech recognition

نویسندگان

  • Yi-Wen Chen
  • Bo-Han Hao
  • Kuan-Yu Chen
  • Berlin Chen
چکیده

Language modeling (LM), aiming to provide a statistical mechanism to associate quantitative scores to sequences of words, has long been an interesting yet challenging problem in the field of speech and language processing. Although the ngram model remains the predominant one, a number of disparate LM methods have been developed to complement the n-gram model. Among them, relevance modeling (RM) that explores the relevance information inherent between the search history and an upcoming word has shown preliminary promise for dynamic language model adaptation. This paper continues this general line of research in two significant aspects. First, the so-called “bag-of-words” assumption of RM is relaxed by incorporating word proximity evidence into the RM formulation. Second, latent topic information is additionally explored in the hope to further enhance the proximity-based RM framework. A series of experiments conducted on a large vocabulary continuous speech recognition (LVCSR) task seem to demonstrate that the various language models deduced from our framework are very comparable to existing language models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Word Relevance Modeling for Speech Recognition

Language models for speech recognition tend to be brittle across domains, since their performance is vulnerable to changes in the genre or topic of the text on which they are trained. A number of adaptation methods, discovering either lexical co-occurrence or topic cues, have been developed to mitigate this problem with varying degrees of success. Among them, a more recent thread of work is the...

متن کامل

Leveraging Effective Query Modeling Techniques for Speech Recognition and Summarization

Statistical language modeling (LM) that purports to quantify the acceptability of a given piece of text has long been an interesting yet challenging research area. In particular, language modeling for information retrieval (IR) has enjoyed remarkable empirical success; one emerging stream of the LM approach for IR is to employ the pseudo-relevance feedback process to enhance the representation ...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Interpolated Dirichlet Class Language Model for Speech Recognition Incorporating Long-distance N-grams

We propose a language modeling (LM) approach incorporating interpolated distanced n-grams in a Dirichlet class language model (DCLM) (Chien and Chueh, 2011) for speech recognition. The DCLM relaxes the bag-of-words assumption and documents topic extraction of latent Dirichlet allocation (LDA). The latent variable of DCLM reflects the class information of an n-gram event rather than the topic in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013